

FXBA-1014-01 1 / 4

X-Ray Fluorescence Analysis of Chlorine in Cement and Hot Meal Using Borate Fusion and the VITRIOX® electric

Introduction

The analysis of materials containing chlorine with XRF is a continuous challenge, because chlorine displays high volatility during borate fusion. This leads to poor repeatability with conventional fusion systems.

Fig. 1: Electrical Fusion Machine with 4 Stations for XRF and ICP.

FXBA-1014-01 2 / 4

X-Ray Fluorescence Analysis of Chlorine in Cement and Hot Meal Using Borate Fusion and the VITRIOX® electric

The method presented here takes advantage of the capabilities of the new electrical fusion machine VITRIOX electric from FLUXANA [1]:

- Precise temperature control
- High precision
- Fusion with covers

Fig.2: Cup for electrical fusion machine with removable cover.

Procedure

Sample preparation of the sample, which had been dried at 105 °C, was conducted using borate fusion. The ratio of sample to flux was 1:8. In this way, it was possible to achieve high sensitivity for chlorine.

Sample Preparation

Cement, hot meal dried 1 g

Flux FX-X65* 8 g

^{*66%} lithium tetraborate + 34% lithium metaborate

FXBA-1014-01 3 / 4

X-Ray Fluorescence Analysis of Chlorine in Cement and Hot Meal Using Borate Fusion and the VITRIOX® electric

1. Example: Calibration of Chlorine in hot meal

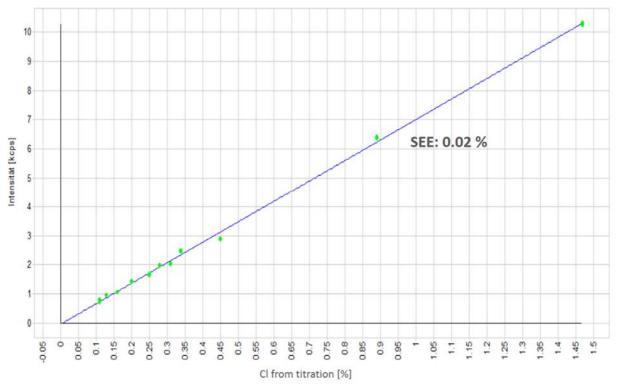


Fig. 3: Calibration for chlorine in hot meal, calibration error RMS = 0.02%. Reference values were performed with titration.

The calibration samples were real samples provided by a customer analyzed by wet chemistry. They were fused using the electrical fusion machine from FLUXANA. Duplicates of all samples were produced. The calibration error achieved for chlorine was 0.02%.

FXBA-1014-01 4 / 4

X-Ray Fluorescence Analysis of Chlorine in Cement and Hot Meal Using Borate Fusion and the VITRIOX® electric

2. Example: Determination of chlorine in cement

Table 1 shows the results for repeat preparations with the VITRIOX® Electric of cement samples containing low chlorine concentrations.

Table 1: Determination of chlorine in cement using fused bead method.

Preparation#	Chlorine mass%
1	0,037
2	0,036
3	0,038
4	0,035
5	0,036
6	0,035
7	0,037
8	0,036
9	0,034
10	0,035
11	0,034
12	0,041
Mean	0,036
Std.dev.	0,002

Summary

The results presented here clearly confirm that borate beads can be produced with highest precision using FLUXANA's new electrical fusion machine VITRIOX® electric. Volatile elements, such as chlorine, for which the precision depends on the temperature stability of the fusion machine, can be satisfactorily analyzed.

References

[1] Rainer Schramm, X-Ray Fluorescence Analysis: Practical and Easy - 2nd edition, FLUXANA (2017).